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Effective interactions and volume energies in charged colloids:
Linear response theory

A. R. Denton*
Department of Physics, Acadia University, Wolfville, Nova Scotia, Canada B0P 1X0

~Received 4 February 2000!

Interparticle interactions in charge-stabilized colloidal suspensions, of arbitrary salt concentration, are de-
scribed at the level of effective interactions in an equivalent one-component system. Integrating out the degrees
of freedom of all microions from the partition function, and assuming a linear response to the macroion
charges, general expressions are obtained for both an effective electrostatic pair interaction and an associated
microion volume energy. For macroions with hard-sphere cores, the effective interaction is of the Derjaguin-
Landau-Verwey-Overbeek screened-Coulomb form, but with a modified screening constant that incorporates
excluded volume effects. The volume energy—a natural consequence of the one-component reduction—
contributes to the total free energy, and can significantly influence thermodynamic properties in the limit of
low-salt concentration. As illustrations, the osmotic pressure and bulk modulus are computed and compared
with recent experimental measurements for deionized suspensions. For macroions of sufficient charge and
concentration, it is shown that the counterions can act to soften or destabilize colloidal crystals.

PACS number~s!: 82.70.Dd, 83.70.Hq, 05.20.Jj, 05.70.2a
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I. INTRODUCTION

More than a century ago, it was recognized that m
colloidal particles carry an electric charge@1#. Colloidal
macroions—typically 1–1000 nm in diameter—may acqu
charges from surface dissociation of counterions, adsorp
of salt ions from solution, or the creation of defects in crys
lattices. Electrostatic repulsion between macroions s
pended in a molecular fluid is one of the two chief mech
nisms by which colloidal suspensions may be stabiliz
against coagulation induced by attractive van der Wa
forces.

Charge-stabilized colloidal suspensions exist in a w
variety of forms. Familiar examples include clay minera
~relevant to mineralogy, agriculture, and the paper indust!,
paints, inks, and solutions of charged micelles. Further
amples are synthetic latex or silica microspheres@2#, which
may self-assemble, if sufficiently monodisperse, into orde
crystals. Aside from providing valuable model systems
fundamental studies of condensed matter, colloidal crys
exhibit unique optical properties that have inspired a num
of recent applications, e.g., nanosecond optical switches@3#,
chemical sensors@4#, and photonic band gap materials@5#.

Despite the considerable and growing technological
portance of charged colloids, progress in predicting mac
scopic properties is limited by an incomplete understand
of interparticle interactions. Most theoretical treatments
electrostatic interactions are rooted in the landmark theor
Derjaguin, Landau, Verwey, and Overbeek~DLVO! @6#. The
DLVO theory describes the bare Coulomb interactions
tween macroions as screened by the surrounding micro
~counterions and salt ions!. The resulting screened-Coulom
pair potential accounts—at least qualitatively—for a range
observed phenomena, including the dependence of coag
tion rate on counterion valence and trends in phase stab
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with varying salt concentration. Recently, interest in collo
dal interactions has intensified as a result of accumula
experimental evidence for apparent long-range attracti
between macroions@7,8#.

A rigorous statistical mechanical treatment of the mu
component mixture of macroions, counterions, salt ions,
solvent molecules is a daunting task. Interactions in s
complex systems are therefore usually treated at the leve
effectiveinteractions. Tracing out from the partition functio
statistical degrees of freedom associated with all but a sin
component, the mixture is formally mapped onto an equi
lent one-component system of ‘‘pseudoparticles’’ govern
by an effective state-dependent interaction@9#. Effective in-
teractions in charge-stabilized colloids have been mode
by a variety of techniques, including Poisson-Boltzmann c
models @10–12# density-functional theory@13–18#, Monte
Carlo and molecular dynamics simulations@19–22#, and
powerful ab initio methods@13,23#.

Here we adopt an alternative approach, recently propo
by Silbert and co-workers@24,25#, which exploits analogies
between charged colloids and metals. Performing a class
trace over microion degrees of freedom, and treating
electrostatic response of the microions to the macroi
within second-order perturbation theory, leads to an effec
pair interaction between pseudomacroions and an assoc
volume energy. The volume energy, which contributes to
total free energy, must be included when calculating therm
dynamic properties of charged colloids modeled by an eff
tive pair potential @14–17,24,29#. Noting the correspon-
dences, microion↔ electron and macroion↔ metallic ion,
the response approach is the colloidal equivalent of
widely used pseudopotential theory of metals@26–28#.

In previous work@30#, the response approach was e
tended to finite-sized macroions in deionized suspensio
This paper generalizes the theory to the case of arbitrary
concentration, consistently taking into account~1! the vol-
ume excluded to the microions by the macroion hard co
and~2! the response of both counterions and salt ions to
macroion charges. Section II begins with a brief review
te
3855 ©2000 The American Physical Society
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3856 PRE 62A. R. DENTON
the response theory and then outlines our extensions o
theory. Section III presents the main results—obtain
within a linear response approximation—for an effective p
potential acting between pseudomacroions and an assoc
volume energy, both of which consistently incorporate e
cluded volume effects. The influence of the volume ene
on thermodynamic properties is illustrated by calculations
the osmotic pressure and bulk modulus. Comparisons w
experimental data show that the counterions contribut
substantial fraction of the osmotic pressure and can softe
destabilize colloidal crystals. Finally, in Sec. IV we summ
rize and conclude.

II. THEORY

A. Model

Within the ‘‘primitive’’ model, the system comprisesNm
charged hard-sphere macroions of diameters and charge
2Ze (e being the elementary charge!, andNc point counte-
rions of chargeze suspended in an electrolyte solvent. Gl
bal charge neutrality constrains macroion and counte
numbers according toZNm5zNc . Each macroion is as
sumed to carry a fixed charge, uniformly distributed over
surface. The solvent hostsNs pairs of salt ions in a uniform
dielectric fluid characterized entirely by a dielectric const
e. For notational simplicity, we assume a symmetric 1
electrolyte, consisting ofNs point ions of chargeze andNs
of charge2ze ~i.e., the same valence as counterions!. The
microions thus numberN15Nc1Ns positive andN25Ns
negative, for a total ofNm5Nc12Ns . The system occupie
a total volumeV at temperatureT, and a fixed salt concen
tration maintained by an exchange of salt ions, throug
semipermeable membrane, with a salt reservoir.

Denoting macroion and microion coordinates by$R% and
$r%, respectively, the Hamiltonian of the system may be
pressed in the general form

H~$R%,$r%!5Hm1Hm1Hm11Hm2 . ~1!

The first two terms on the right side of Eq.~1! denote Hamil-
tonians for macroions and microions, respectively. Assum
the only relevant interactions to be steric and electrosta
the bare macroion HamiltonianHm is given by

Hm5Km1
1

2 (
i , j 51
( iÞ j )

Nm

@vHS~ uRi2Rj u!1vmm~ uRi2Rj u!#,

~2!

Km being the kinetic energy of the macroions,vHS(uRi
2Rj u) the hard-sphere pair interaction between macro
cores, andvmm(r )5Z2e2/er the bare Coulomb interactio
between a pair of macroions separated by center-to-ce
distancer .s. Similarly, the microion Hamiltonian takes th
form

Hm5Km1(
i 51

Nm

(
j 51

Nm

vHS~ ur i2Rj u!1
1

2 (
i , j 51
( iÞ j )

N1

v11~ ur i2r j u!

1(
i 51

N1

(
j 51

N2

v12~ ur i2r j u!1
1

2 (
i , j 51
( iÞ j )

N2

v22~ ur i2r j u!, ~3!
he
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whereKm is the microion kinetic energy,vHS(ur i2Rj u) is the
hard-sphere interaction between a point microion and a m
roion core, andv11(r )5v22(r )52v12(r )5z2e2/er is the
microion-microion Coulomb interaction. The last two term
in Eq. ~1! are the macroion-microion electrostatic interacti
energies, given by

Hm65(
i 51

N6

(
j 51

Nm

vm6~ ur i2Rj u!, ~4!

where vm6(r ) denotes the macroion-microion electrosta
pair interaction. For later reference, we note that Eq.~4! also
may be expressed in the form

Hm65E drE dRr6~r !rm~R!vm6~ ur2Ru!, ~5!

where

r6~r ![(
i 51

N6

d~r2r i !, rm~R![(
j 51

Nm

d~R2Rj ! ~6!

are the microion and macroion density operators, whose F
rier transforms are

r̂6~k!5(
i 51

N6

exp~ ik•r i !, r̂m~k!5(
j 51

Nm

exp~ ik•Rj !. ~7!

Althoughvm6(r ) has a Coulomb form outside the macroio
core radius, inside the core it has no unique definition. Th
following van Roij and Hansen@14#, we are free to choose
vm6(r ) to be a constant forr ,s/2, and take

vm6~r !5H 7Zze2

er
, r .s/2

7Zze2

es/2
a, r ,s/2,

~8!

where the parametera will be specified~Sec. III C! to ensure
that the microion densities vanish within the core.

B. Reduction to an equivalent one-component system

With the Hamiltonian specified, we now turn to a stat
tical mechanical description of the system, our ultimate g
being the free energy. The canonical partition function
given by

Z5Š^exp~2H/kBT!&m‹m , ~9!

the angular brackets symbolizing classical traces over mi
ion and macroion degrees of freedom. Following stand
treatments originating from the theory of simple meta
@27,28,31#, we now reduce the two-component macroio
microion mixture to an equivalent one-component system
performing a restricted trace over microion coordinat
keeping macroion coordinates fixed. Thus, without appro
mation, in this purely classical system,

Z5^exp~2Heff /kBT!&m , ~10!
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whereHeff[Hm1Fm is the effective Hamiltonian of a one
component system of pseudomacroions, and where

Fm[2kBT ln^exp@2~Hm1Hm11Hm2!/kBT#&m ~11!

may be physically interpreted as the free energy of a non
form gas of microions in the midst of macroions fixed
positionsRi . Formally adding to and substracting fromH
the energyEb of a uniform background having a charg
equal to that of the macroions, Eq.~11! may be recast in the
form

Fm52kBT ln^exp@2~Hm8 1Hm18 1Hm28 !/kBT#&m ,
~12!

whereHm8 5Hm1Eb andHm68 5Hm62Eb/2. The advantage
of this simple manipulation is thatHm8 is the Hamiltonian of
a classical, two-component plasma of microions, in a u
form compensating background, in the presence ofneutral
hard-sphere macroions. In order that the plasma be fre
infinities associated with the long-range Coulomb inter
tion, the background must occupy the same volume as
microions. The background is thus excluded—along with
microions—from the macroion cores. The microions a
background then jointly occupy afree volume V8[V(1
2h), which is the total volume reduced by the volume fra
tion of the macroion cores,h5(p/6)(Nm /V)s3.

The background energy is given explicitly by@31#

Eb5
1

2
~n12n2!2E

V8
drE

V8
dr 8

z2e2

eur2r 8u

2(
i 51

Nm E
V8

dr
~n12n2!Zze2

eur2Ri u

52
1

2
~N12N2!~n12n2!v̂11~0!, ~13!

where n65N6 /V85n6
(0)/(12h) are the effective mean

densities of microions in the volume not occupied by t
macroion cores, andn6

(0)5N6 /V are thenominalmean den-
sities. For later reference, we also definens5n2 and nc
5n12n2 as the effective densities of salt-ion pairs a
counterions, respectively. In Eq.~13!, v̂11(0), defined by

v̂11~0!5E
V8

dr
z2e2

er
5 lim

k→0
S 4pz2e2

ek2 D , ~14!

is the k→0 limit of the Fourier transform ofv11(r ). Al-
though formally infinite,Eb will be seen below to be identi
cally canceled by compensating infinities inHm andHm6 .

C. Linear response approximation

The theory presented thus far is exact, within the prim
tive model. The challenge remains to calculate the micro
free energy@Eq. ~11!#. One proposed strategy@14# invokes
density-functional theory to approximateFm , regarded as a
functional of the microion densities, by performing a fun
tional Taylor-series expansion about a uniform microi
plasma. An alternative strategy@24,25#, inspired by the
pseudopotential theory of metals, is to formally regardHm68
i-
t

i-

of
-

he
e
d

-

-
n

as ‘‘external’’ potentials acting upon a microion plasma a
then approximateFm by perturbation theory. Following the
second strategy, we write@31#

Fm5Fp1E
0

1

dl~^Hm18 &l1^Hm28 &l!, ~15!

where

Fp52kBT ln^exp~2Hm8 /kBT!&m ~16!

is the free energy of the reference microion plasma, occu
ing a volumeV8, in the presence of neutral hard-sphere m
roions. The integral overl in Eq. ~15! corresponds physi-
cally to an adiabatic charging of the macroions from neu
to fully charged spheres. The ensemble average^ &l repre-
sents an average with respect to the distribution function
system whose macroions carry a chargelZ.

Further progress is facilitated by expressing^Hm68 &l in
terms of Fourier components of the macroion and micro
densities and of the macroion-microion interaction. Fro
Eqs.~5!–~7!, we have

^Hm68 &l5
1

V8
(
kÞ0

v̂m6~k!^r̂6~k!&lr̂m~2k!

1
1

V8
lim
k→0

@ v̂m6~k!^r̂6~k!&lr̂m~2k!#2Eb/2.

~17!

Evidently ^Hm68 &l depends throughr̂6(k) upon the re-
sponse of the microions to the macroion charge density.
garding the macroion charge as imposing an external po
tial on the microions, and assuming that the microi
densities respondlinearly to this potential, the Fourier com
ponents of the microion densities appearing in Eq.~17! may
be expressed in the form

^r̂1~k!&l5l@x11~k!2x12~k!#v̂m1~k!r̂m~k!, kÞ0
~18!

and

^r̂2~k!&l5l@x12~k!2x22~k!#v̂m1~k!r̂m~k!, kÞ0,
~19!

wherex66(k) are the linear response functions of the ref
ence two-component microion plasma, and where we h
used the symmetry relationsx12(k)5x21(k) and v̂m1(k)
52 v̂m2(k). Note that fork50 there is no response, sinc
r̂6(0)5N6 , as determined by the fixed numbers of micr
ions. Substituting Eqs.~18! and~19! into Eq.~17!, and this in
turn into Eq.~15!, and integrating overl, the microion free
energy is given to second order in the macroion-micro
interaction by
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Fm5Fp1
1

2V8
(
kÞ0

@x11~k!22x12~k!1x22~k!#

3@ v̂m1~k!#2r̂m~k!r̂m~2k!1Nm

3~n12n2! lim
k→0

@ v̂m1~k!#2Eb , ~20!

where again we have used the relationv̂m1(k)52 v̂m2(k).
Correspondingly, the effective Hamiltonian takes the form

Heff5Km1
1

2 (
i , j 51
iÞ j

Nm

vHS~ uRi2Rj u!

1
1

2V8
(

k
v̂mm~k!@ r̂m~k!r̂m~2k!2Nm#1Fp

1
1

2V8
(
kÞ0

x~k!@ v̂m1~k!#2r̂m~k!r̂m~2k!

1Nm~n12n2! lim
k→0

@ v̂m1~k!#2Eb , ~21!

where we have defined

x~k![x11~k!22x12~k!1x22~k!. ~22!

Now rearranging terms, Eq.~21! may be restructured an
written in the formally simpler form

Heff5Km1
1

2 (
i , j 51
iÞ j

Nm

vHS~ uRi2Rj u!

1
1

2V8
(

k
v̂eff~k!@ r̂m~k!r̂m~2k!2Nm#1E0

5Km1
1

2 (
i , j 51
iÞ j

Nm

@vHS~ uRi2Rj u!1veff~ uRi2Rj u!#1E0 ,

~23!

where

veff~r !5vmm~r !1v ind~r ! ~24!

has the physical interpretation of aneffectiveelectrostatic
pair potential between pseudomacroions, which is the sum
the bare Coulomb potential, and aninducedpotential whose
Fourier transform is

v̂ ind~k!5x~k!@ v̂m1~k!#2. ~25!

The final term in Eq.~23! is thevolume energy,

E05Fp1
Nm

2
lim
r→0

v ind~r !1Nm~n12n2!

3 lim
k→0

F2
z

2Z
v̂ ind~k!1 v̂m1~k!G2Eb , ~26!
of

which is a natural byproduct of the reduction to an equiv
lent one-component system. Although it has no explicit d
pendence on the macroion coordinates~see below!, E0 evi-
dently depends on the mean density of macroions,
therefore can contribute significantly to the total free ene
of the system. In passing, we note that the above express
for the effective pair potential and the volume energy a
analogous to expressions appearing in the pseudopote
theory of metals@27,28,31,32# if one substitutes forFp and
x(k), respectively, the energy and linear response func
of the homogeneous electron gas~in the presence of a com
pensating background!, and for v̂m1(k) the electron-ion
pseudopotential.

Summarizing thus far, we have adopted the primiti
model of charged colloids, formally reduced the macroio
microion mixture to an equivalent one-component system
pseudomacroions, and applied a linear response approx
tion to the microion density, to obtain expressions for
effective electrostatic pair interaction@Eqs. ~24! and ~25!#
and an associated volume energy@Eq. ~26!#. Practical calcu-
lations still require explicit specification of~1! the reference
plasma free energyFp , ~2! the plasma linear response fun
tions x66(k), and ~3! the macroion-microion interaction

v̂m1(k). In the next section we consider each of these
turn.

III. RESULTS AND DISCUSSION

A. Reference microion plasma

The free energy of the two-component reference plas
may be expressed as

Fp5F id1Fcorr1Fcc2Eb , ~27!

whereF id andFcorr are the ideal-gas and correlation cont
butions andFcc is the energy associated with Coulomb pa
interactions between microions. It is important to emphas
that by associating the hard-sphere part of the to
macroion-microion interaction with the microion Hami
tonian @Eq. ~3!#—required, since response theory does n
apply to hard-sphere interactions—the reference micro
plasma is implicitly restricted to the free volume outside
the macroion cores. As a consequence, the plasma is
strictly uniform, since the boundary conditions, imposed
the macroion surfaces, may induce nonuniformity. In ge
eral, the ideal-gas free energy is given by

bF id5E drr1
(0)~r !„ln@r1

(0)~r !L3#21…

1E drr2
(0)~r !„ln@r2

(0)~r !L3#21…, ~28!

where b[1/kBT, L is the microion thermal de Broglie
wavelength, andr6

(0)(r ) are the nonuniform densities o
positive and negative microions in an external field due
the macroion cores~but not their electric fields!.

Now, for typical macroion charges and concentratio
counterion concentrations are in themM (1026 mol/l! range.
If the salt concentration also falls in this range, then micro
concentrations are low enough that the plasma is essent
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uniform. In this case,Fcc.Eb, and the last two terms in Eq
~27! cancel each other. Furthermore, a plasma of such
concentration is weakly coupled, with coupling parame
G[z2e2/ekBTam!1, wheream5(3/4pnm)1/3 is the micro-
ion sphere radius andnm5n11n2 is the total microion
number density.~In sharp contrast, electron plasmas in m
als are typically characterized byG@1.! The correlation free
energy per microion then may be approximated by the A
expansion@33#

bFcorr

Nm
52

1

A3
G3/21O~G3!, ~29!

the leading term being the Debye-Hu¨ckel approximation
@34#. Thus, at low salt concentrations, if nonuniformities a
correlations are ignored@14,17,29#, a reasonable approxima
tion for the free energy of the microion plasma is

bFp.N1@ ln~n1L3!21#1N2@ ln~n2L3!21#

5Nm@ ln~nmL3!211x1ln x11x2ln x2#, ~30!

wherex65N6 /Nm are the mean microion concentrations

B. Linear response functions

The linear response functionsx i j (k), i , j 56 of the two-
component reference plasma are simply proportional to
corresponding partial structure factors,Si j (k):

x i j ~k!52bnmSi j ~k!. ~31!

Liquid state theory@35# now relates the partial structure fa
tors to Fourier transforms of the pair correlation function
ĥi j (k), via

Si j ~k!5xid i j 1xixjnmĥi j ~k!. ~32!

The pair correlation functions are in turn related to Four
transforms of the direct correlation functions,ĉi j (k), by the
Ornstein-Zernike~OZ! equation for mixtures,

ĥi j ~k!5 ĉi j ~k!1nm(
l

xl ĉi l ~k!ĥl j ~k!, i , j ,l 56 ~33!

which serves in fact to defineĉi j (k). For such weakly
coupled plasmas as we encounter in charged colloids,
mean spherical approximation~MSA! provides a reasonabl
closure for the OZ equation. This amounts to approximat
ci j (r ) by its asymptotic (r→`) limit ci j (r ).2bv i j (r ) for
all r, or, equivalently,

ĉi j ~k!.2b v̂ i j ~k!52
4pbzizje

2

ek2
, ~34!

where zi ,zj56z. Since, in the MSA,ĉ11(k)5 ĉ22(k)
52 ĉ12(k)[ ĉ(k), it follows directly from Eq.~33! that

ĥ11~k!5ĥ22~k!52ĥ12~k!5
ĉ~k!

12nmĉ~k!
. ~35!
w
r

-

e

e

,

r

he

g

Substituting Eqs.~32!, ~34!, and ~35! into Eq. ~31! yields
x i j (k), from which we obtain

x11~k!2x12~k!52
bn1

12nmĉ~k!
52

bn1

11k2/k2
,

~36!

x12~k!2x22~k!5
bn2

12nmĉ~k!
5

bn2

11k2/k2
, ~37!

and

x~k!52
bnm

12nmĉ~k!
52

bnm

11k2/k2
, ~38!

where

k[S 4pnmz2e2

ekBT D 1/2

5S 4pnm
(0)z2e2

~12h!ekBTD 1/2

, ~39!

and nm
(0)5Nm /V5nm(12h) is the total nominal microion

number density. As will be seen below, the parameterk
plays the role of the Debye screening constant~inverse
screening length! in the microion density profiles and in th
effective pair interaction.

C. Microion density profiles

Specifying the macroion-microion interaction amounts
determining the value of parametera in Eq. ~8! that ensures
vanishing microion densities inside the macroion cores. T
in turn requires a calculation of the real-space microion d
sity profiles. The first step of this calculation is to Fouri
transform Eq.~8!, with the result

v̂m6~k!57
4pZze2

ek2 F ~12a!cos~ks/2!1a
sin~ks/2!

ks/2 G .
~40!

Now substituting Eqs.~36!, ~37!, and~40! into Eqs.~18! and
~19! gives, for thekÞ0 Fourier components of the microio
densities,

r̂6~k!56x6

Z

z S k2

k21k2D F ~12a!cos~ks/2!1a
sin~ks/2!

ks/2 G
3(

j 51

Nm

exp~ ik•Rj !, kÞ0, ~41!

where the sum is over the positionsRj of the macroions.
Next inverse transforming Eq.~41!, while respecting thek
→0 limits, r̂6(0)5N6 , we obtain

r6~r !55 r`6x6(
j 51

Nm

r.~ ur2Rj u!, ur2Rj u.s/2

x6(
j 51

Nm

r,~ ur2Rj u!, ur2Ri u,s/2,

~42!
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wherer`5x2n11x1n2 is the bulk density of positive o
negative microions~far from any macroion!. Note that in
general r`Þns , although r`→ns in the limit x6

→1/2 (nc /ns→0). In Eq.~42!, r.(r ) andr,(r ) are single-
macroion orbitals, given by

r.~r !5
Z

z

k2

4p F ~12a!cosh~ks/2!

1a
sinh~ks/2!

ks/2 Gexp~2kr !

r
, r .s/2 ~43!

and

r,~r !5
Z

z

k2

4p S 211a1
a

ks/2Dexp~2ks/2!
sinh~kr !

r
,

r ,s/2. ~44!

Vanishing ofr,(r ) for r ,s/2 is evidently ensured by se
ting

a5
ks/2

11ks/2
. ~45!

Finally, substituting this choice fora back into Eq.~43!
specifies ther .s/2 orbital as

r.~r !5
Z

z

k2

4p

exp~ks/2!

11ks/2

exp~2kr !

r
, r .s/2, ~46!

which is automatically normalized to the correct number
counterions per macroion (Z/z). The corresponding micro
ion density profiles are the linear combinations

r6~r !5r`6x6

Z

z

k2

4p

exp~ks/2!

11ks/2 (
j 51

Nm exp~2kur2Rj u!
ur2Rj u

,

ur2Rj u.s/2. ~47!
n

ti

on
he
n-
f

Expression~46! is seen to be of precisely the same form
the Debye-Hu¨ckel expression for the density of electroly
ions around a macroion@1#. A significant distinction lies,
however, in the definition of the screening constant,k.
Whereas the Debye-Hu¨ckel k depends on thenominalbulk
density of electrolyte ions, ourk @Eq. ~39!# depends rather
on the effectivemean microion densitynm ~in the volume
unoccupied by macroions!. The importance of redefining th
usual k in this way, particularly for concentrated suspe
sions, was noted previously by Russel and co-workers@36#.

D. Effective pair interaction and volume energy

We are now in a position to derive the main results of t
paper. Considering first the effective electrostatic pair int
action between pseudomacroions, we proceed by substitu
Eq. ~45! into Eq. ~40!, obtaining, for the macroion-microion
interaction,

v̂m6~k!57
4pZze2

ek2 S 1

11ks/2D Fcos~ks/2!1k
sin~ks/2!

k G .
~48!

Next substituting Eqs.~38! and ~48! into Eq. ~25! yields the
induced potential

v̂ ind~k!52
2pZ2e2

ek2 S 1

11ks/2D
2S k2

k21k2D
3F11cos~ks!12k

sin~ks!

k
1k2

12cos~ks!

k2 G .

~49!

Fourier transformation of Eq.~49! is a straightforward calcu-
lation, with the result
v ind~r !5H Z2e2

e S exp~ks/2!

11ks/2 D 2 exp~2kr !

r
2

Z2e2

er
, r .s

2
Z2e2

2er S 1

11ks/2D
2 F ~21ks!kr 2

1

2
k2r 2G , r ,s.

~50!
s

d

Finally, substituting Eq.~50! into Eq. ~24!, we obtain an
explicit expression for the effective electrostatic pair pote
tial:

veff~r !5
Z2e2

e S exp~ks/2!

11ks/2 D 2 exp~2kr !

r
, r .s. ~51!

This result is seen to be identical in form to the electrosta
part of the DLVO effective pair potential@6#, which is usu-
ally derived by linearizing the Poisson-Boltzmann equati
The only distinction between our pair potential and t
DLVO potential lies in the definition of the screening co
-

c

.

stant, ours@Eq. ~39!# being a factor (12h)21/2 larger than
the usual DLVOk to account for exclusion of microion
from the macroion cores.

Now the volume energy may be explicitly determine
from Eq. ~26!. It follows immediately from Eq.~50! that

lim
r→0

v ind~r !52
Z2e2

e

k

11ks/2
, ~52!

from Eq. ~49! that
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lim
k→0

v̂ ind~k!52S Z

zD 2

v̂11~0!1
pZ2e2s2

e

11ks/6

11ks/2

1
4pZ2e2

ek2
, ~53!

and from Eq.~48! that

lim
k→0

v̂m1~k!52
Z

z
v̂11~0!1

pZze2s2

2e

11ks/6

11ks/2
. ~54!

Substituting Eqs.~52!–~54! into Eq.~26!, and using approxi-
mation ~30!, for the volume energy we obtain

bE05N1ln~n1L3!1N2ln~n2L3!2Nm

Z2e2b

2e

k

11ks/2

2
1

2

~N12N2!2

N11N2
, ~55!

neglecting irrelevant constants. Note that the infinities as
ciated with thek→0 limits formally cancel one another, a
they must@37#. The first term on the right side of Eq.~55! is
the ideal-gas plasma free energy, discussed in Sec. III A.
second term, which accounts for the electrostatic energ
interaction between the macroions and their screening clo
of counterions, is equivalent to one half the interaction
ergy were all the counterions to be placed at a radial dista
k21 from the surfaces of their respective macroions. The fi
term corresponds to thek→0 limit in Eq. ~26!. Our result for
the volume energy is very similar to that derived by van R
and co-workers@14,15# from a density-functional expansion
differing only in the manner in which exclusion of microion
from the macroion cores is incorporated. While Eq.~55! in-
corporates excluded volume effects through a dependenc
the screening constant@Eq. ~39!# on the effective microion
density, van Roij and co-workers incorporate them throu
an additional term in the volume energy@Eq. ~61! in Ref.
@15##.

In closing this section, we remark on the range of valid
of the theory. First, although the linear response approxi
tion presupposes a relatively weak microion response to
macroions, and thus weak screening, the general form of
screened-Coulomb pair potential in bulk suspensions
broadly supported by Poisson-Boltzmann cell model calcu
tions@10#, ab initio simulations@13,23#, and experiments@7#.
Second, the excluded volume corrections incorporated
the modified screening constantk may become significan
even in the weak-screening regime for concentrated sus
sions of weakly charged macroions. Finally, although
theory neglects~in mean-field fashion! fluctuations and cor-
relations in the microion densities, Monte Carlo simulatio
and cell model calculations@44# for spherical macroions sug
gest that such correlations contribute only marginally to
total free energy.

E. Osmotic pressure and bulk modulus

Being independent of the macroion coordinates, the
croion volume energyE0 appears simply as an additive ter
in the total Helmholtz free energy of the system,F5Fm
o-

he
of
ds
-
ce
al

j

of

h

a-
e

he
is
-

to

n-
e

s

e

i-

1E0, where Fm is the free energy of the equivalent on
component system of pseudomacroions interacting via
effective pair potentialveff(r ). Correspondingly, any thermo
dynamic quantity derived from this free energy may be d
composed into effective macroion and microion contrib
tions. SinceE0 @Eq. ~55!# depends on the mean macroio
density—both explicitly and implicitly throughk—it can
significantly influence thermodynamic properties of the s
tem, especially at low salt concentrations@15–17,30#.

As illustrations, we consider the osmotic pressure a
bulk modulus. A colloidal suspension in equilibrium
through a semipermeable membrane, with a reservoir of
solution exerts an osmotic pressure,P5P2Pr , defined as
the difference between the pressure of the system,P, and that
of the reservoir,Pr . Treating the reservoir as an ideal gas
Nr salt ion pairs in a volumeVr , we havebPr52Nr /Vr .
Chemical equilibrium is characterized by the equality of t
chemical potentials of salt ion species exchanged betw
the system and the reservoir. The chemical potential of
salt, defined as the change in free energy upon adding a
ion, includes a contribution arising from the effect of sa
concentration on the macroion-microion interaction~through
k!. Thus, in general, the salt concentrations of the sys
and reservoir are nontrivially related. However, for syste
sufficiently dilute that the macroion contribution may b
ignored—an assumption we make here—the condition
chemical equilibrium may be approximated by equality
the reservoir salt density,Nr /Vr , and theeffectivesalt den-
sity of the system,ns5(Ns /V)/(12h). Note that the effec-
tive salt density exceeds the nominal salt densityNs /V by
the ratio of the total volume to the free volume unoccup
by the macroion cores. The distinction here between nom
and reservoir salt densities is akin to that between nom
and reservoir polymer densities in colloid-polymer mixtur
@38#. The reservoir pressure is then given by

bPr.2ns . ~56!

The total pressure~or equation of state! of the system,P
5Pm1P0, comprises a macroion contributionPm and a mi-
croion contributionP052(]E0 /]V)Nm ,Ns

. Combining Eqs.
~55! and ~56!, we obtain

bPs35bPms31ncs
32

1

16p

Z

z2

~ks!3

~11ks/2!2
. ~57!

The same result is obtained for arbitrary macroion conc
tration in the limit of zero salt concentration (ns→0), in
which casePr50. The second and third terms in Eq.~57!
represent, respectively, the ideal-gas pressure of the cou
rions and a van der Waals-like adjustment that accounts
the attraction between counterions and macroions. With
creasing counterion density, these two terms compete w
each other, the attractive term acting to reduce the total
motic pressure. For weak microion screening (ks,1),
where the electrostatic fields of the macroions are relativ
weak and the microion densities close to uniform, Eq.~57!
should reasonably approximate the osmotic pressure. In
in the limit ks→0, our result naturally tends to the corre
ideal-gas limit,bP0→nc . For stronger screening (ks.1),
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where the microion densities are more nonuniform, nonlin
response effects may become significant.

The bulk modulus~or inverse compressibility!, defined by
B[2V(]P/]V)Nm ,Ns

, may be similarly expressed in th

form B5Bm1B0, whereBm and B0 are the macroion and
microion contributions, respectively. From Eq.~57!, we im-
mediately obtain

bBs35bBms31
ncs

3

12h
2

3

32p

Z

z2

1

12h

~ks!3~11ks/6!

~11ks/2!3
,

~58!

which again includes repulsive and attractive microi
terms. In Eqs.~57! and ~58!, the macroion contributionsPm
and Bm are understood to be obtained from a theory~or
simulation! of a one-component system of particles intera
ing via the effective pair potential@Eqs. ~39! and ~51!#. In
practice, the macroion charge, notoriously difficult to extr
from experiment, is usually replaced by an adjustable par
eter, the effective or renormalized chargeZ* @10#.

As a test of our results, we compare, in Fig. 1, the osm
pressure predicted from Eq.~57! with the recent experimen
tal measurements of Reuset al. @39# for a colloidal fcc crys-
tal in a highly deionized (ns50) aqueous solvent at room
temperature~Bjerrum lengthlB[bz2e2/e50.714 nm!. As
an approximation for the macroion pressure,Pm , we use
results of integral-equation calculations based on the v
equation with a hypernetted chain~HNC! closure for the
liquid-state pair distribution function@39,40#. For the effec-
tive macroion charge, we take the valueZ* 5700 estimated
by Reuset al. to best match their phase diagram to the sim
lations of Robbinset al. @41#.

The microion is seen to make the dominant contribut
to the total osmotic pressure, and to substantially impr
the agreement between the one-component model and
periment, particularly at lower volume fractions (h,0.07).
The last term in Eq.~57! clearly is essential to reduce th
rapidly increasing counterion ideal-gas pressure. The

FIG. 1. Osmotic pressureP vs macroion volume fractionh for
a fcc crystal of spherical macroions~diameters5102 nm! sus-
pended in a salt-free, aqueous solvent at room temperaturelB

50.714 nm!. Symbols: experimental data of Reuset al. @39#; solid
curve: prediction of linear response theory@Eq. ~57!# with effective
macroion chargeZ* 5700 and HNC virial pressure for macroion
~see text!; long-dashed curve: counterion contributionP0; short-
dashed curve: Poisson-Boltzmann cell model prediction@12,39#.
Over this range of volume fractions, the screening constant
creases from zero toks.4.
r

-

t
-

ic

l

-

n
e
x-

s-

crepancies at higher volume fractions (h.0.07) might be
attributed, at least partially, to an underestimate ofPm by the
liquid-state theory. They may also reflect the nonlinear
sponse of the counterions and associated effective m
body interactions between pseudomacroions. Future w
will address influences of effective triplet interactions on t
osmotic pressure@42#. It should be mentioned that th
Poisson-Boltzmann cell model@12,39# ~upper curve in Fig.
1! matches the experimental data well, especially at hig
h. However, while cell models, which consider the distrib
tion of microions within a Wigner-Seitz cell centered on
single macroion, are limited to periodic crystals, the mo
general one-component model applies to any thermodyna
phase.

A more stringent test of the theory is presented by
bulk modulus—the curvature, with respect to density, of
free energy density. In recent experiments, Weisset al. @43#
determined the bulk modulus of colloidal fcc crystals su
pended in a deionized, aqueous solvent at room tempera
(lB50.714 nm! by measuring the long-wavelength limit o
the static structure factor. For two samples, distinguished
nearest-neighbor distances,a5(3/4pnm)1/352.5 and
3.25 mm, the measured bulk moduli were argued to
lower than the predictions of DLVO theory, as estimated
the basis of an approximate elastic theory for the macro
contributionBm . For the denser crystal, the measured va
was B50.01660.005 Pa, less than a third of the estimat
DLVO value of B50.05260.005 Pa. This analysis ignore
however, the counterion contribution associated with the v
ume energy. Figures 2 and 3 present predictions, comp
from Eq. ~58!, for the counterion contributionB0. These re-
sults demonstrate that for sufficiently high effective mac
ion charge and volume fraction the counterion contribut
may becomenegative. It is essential to include this contribu
tion in the total bulk modulus before comparing the DLV
theory with experiment. In Fig. 2, the crossover point
Z* .7100 may be compared with the effective chargesZ*
.6100 fora52.5 mm andZ* .5200 fora53.25 mm, es-
timated by Weisset al. for isolated pairs of spheres in th
infinite dilution limit. However, lacking reliable knowledg

-

FIG. 2. Counterion contribution to bulk modulusB0 vs effective
macroion chargeZ* for fcc crystals of spherical macroions~diam-
eters5654 nm! suspended in a salt-free, aqueous solvent at ro
temperature. Parameters are chosen for comparison with Ref.@43#.
Solid curve: nearest-neighbor distancea52.5 mm ~macroion vol-
ume fraction h50.0133); dashed curve:a53.25 mm (h
50.00475). ForZ* .7100 the counterion contribution is negativ
The arrow indicates the estimated macroion contribution to the b
modulus of the denser crystal@43# ~see the text!. The maximum
screening constant isks51.9.
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of Z* in the crystal phase, here we forego a more quant
tive analysis. The qualitative message is nevertheless c
at sufficient concentration, the counterions may act tolower
the bulk modulus, softening or even destabilizing (B,0) the
crystal.

IV. CONCLUSIONS

In summary, by reducing a model colloidal suspension
charged hard-sphere macroions and point microions to
equivalent one-component system, and approximating
microion response to the macroion charge using linear
sponse~second-order perturbation! theory, we have derived
an effective electrostatic pair interaction@Eq. ~51!# and an
associated microion volume energy@Eq. ~55!#. The volume
energy, which depends on the average macroion density
counts for both the microion entropy and the macroio
microion interaction energy. The effective interaction, whi

FIG. 3. Counterion contribution to bulk modulusB0 vs macro-
ion volume fractionh for the same system as in Fig. 2, but for thr
different effective macroion charges. Solid curve:Z* 56000; long-
dashed curve:Z* 57000; short-dashed curve:Z* 58000. For suffi-
ciently highZ* , the counterion contribution may be negative ove
significant range of volume fractions. The arrow indicates the e
mated macroion contribution to the bulk modulus of the den
crystal @43#. The maximum screening constant isks52.5.
e

-
ar:

f
n
e

e-

c-
-

governs the dynamics of the macroions, is of precisely
conventional DLVO form for finite-sized macroions, but in
corporates excluded volume corrections through the dep
dence of the screening constant on theeffectivedensity of
microions in the free volume between macroion cores.

The total free energy of the system is the sum of
volume energy and the free energy of the equivalent o
component system of pseudomacroions. From the free
ergy, we have derived simple analytic expressions for
osmotic pressure and bulk modulus. Comparison of theo
ical predictions with experimental data for deionized susp
sions of highly charged macroions shows that the microi
can significantly contribute to the thermodynamic properti
beyond their role in screening the bare Coulomb interact
between macroions. In particular, the volume energy larg
accounts for the observed magnitude of the osmotic press
and qualitatively explains measurements of bulk modu
lower than predicted by the conventional one-compon
DLVO theory. Several recent studies predicted similar infl
ences of volume energies on the phase behavior of cha
colloids @14–17,29#.

The theory presented here can be straightforwardly g
eralized to includenonlinearresponse of microions@42#, and
thereby used to assess the relative importance of effec
many-bodyinteractions@13,23,45# and associated correction
to the effective pair potential and the volume energy. Rela
applications are to colloid-surface interactions and to int
actions between colloids in the vicinity of a surface, whi
experiment@7# and theory@18# suggest may become attra
tive. Work along these lines is in progress.
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